Media optimization for turf bermudagrass experimental line FB1628 callus development Adina Y. Grossman^{*1}, Rebecca O. Arias¹, Kevin Begcy², Kevin E. Kenworthy¹, Esteban F. Rios¹

¹Agronomy Department, University of Florida, ²Environmental Horticulture Department, University of Florida *Corresponding Author: adinaygrossman@ufl.edu

Introduction

- Bermudagrass (Cynodon spp.) is a widely grown warm-season forage and turfgrass crop.
- Tropical Sod Webworm (TSW) (Herpetogramma phaeopteralis) is a destructive turfgrass pest in FL.
- Conducting Agrobacterium-mediated transformation to insert cry1Ac for deltaendotoxin of Bt.
- Low calli growth with hormone concentrations from Hu et al. (2005).
- Auxin and cytokinin concentration and ratio for callus development differ by genotype (Beyl, 2010).

Objectives

• Optimize callus induction media (CIM) for bermudagrass line FB1628 to regenerate calli

Figure 1. Tropical Sod Webworm Larval Stage (Tofangsazi et al., 2014)

References

Beyl, C. A. (2010). PGRs and their use in micropropagation. Plant tissue culture, development and biotechnology.

Hu, F., Zhang, L., Wang, X., Ding, J., & Wu, D. (2005). Agrobacterium-mediated transformed transgenic triploid bermudagrass (Cynodon dactylon × C. transvaalensis) plants are highly resistant to the glufosinate herbicide Liberty. Plant cell, tissue and organ culture, 83(1), 13-19. Tofangsazi, N., Cherry, R. H., Meagher, R. L., & Arthurs, S. P. (2014). Tropical sod webworm (Lepidoptera: Crambidae): a pest of warm season turfgrasses. Journal of Integrated Pest Management, 5(4), C1-C8.

Materials and Methods

- Media: MS (4.4 g/L), L-proline (2.0 g/L), Myo-Inositol (100 mg/L), CH (300 mg/L), Sucrose (30 g/L), Phytagel (3g/L), Plant Preservative Mixture (0.5 mL)
- 9 treatments: combinations of 2,4-D (auxin) and Benzyladenine (BA - cytokinin).
- [2,4-D]: 0.5 ml/L, 1 ml/L, 1.5 ml/L
- [BA]: 0.1 ml/L, 0.2 ml/L, 0.3 ml/L
- Sterilized FB1628 nodes, placed on CIM, stored at 28 °F in the dark.
- Recorded % regenerated shoots, roots, and calli, 1 and 2 weeks after treatment initiation, using 3 reps.

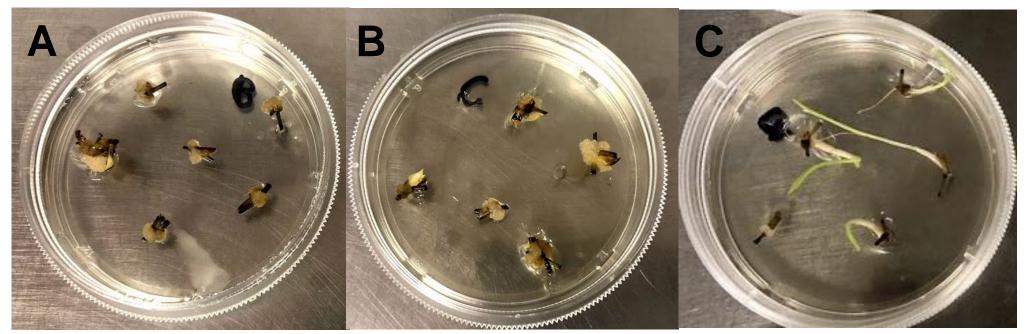


Figure 3. Callus formation of FB1628 for 1 mg/L 2,4-D, 0.2 mg/L BA (A), 1.5 mg/L 2,4-D, 0.3 mg/L BA (B), and 1.0 mg/L 2,4-D, 0.1 mg/L BA (C).

Figure 2. Experimental line FB1628

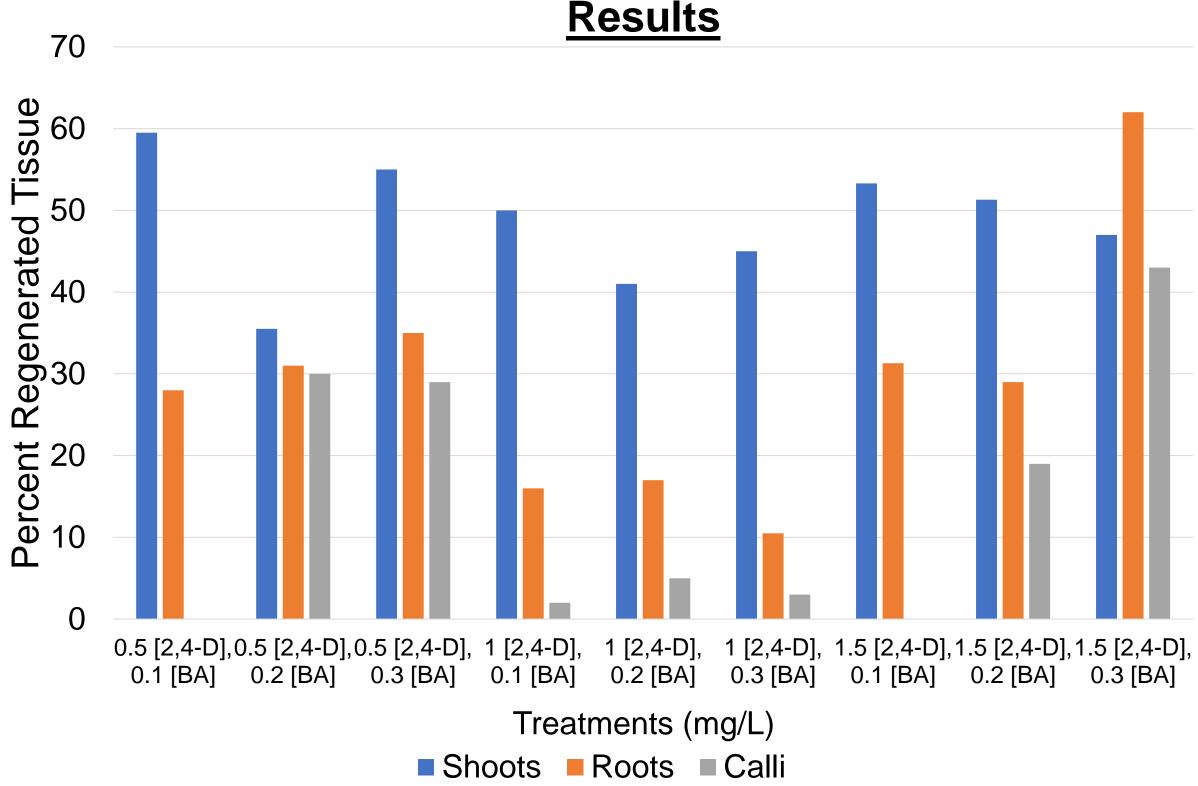


Figure 4. Comparison of regenerated tissue for each treatment of 2,4-D and BA ratio, and concentration.

- FB1628.
- concentrations of 2,4-D.
- monocot species.
- insert the gene *cry1Ac* for TSW resistance

Conclusions

Higher concentrations of 2,4-D and BA are required for calli formation in

Shoot and root development does not inhibit callus growth with high

This study can serve as a guideline for optimization of CIM for any

Next steps will be infection of FB1628 callus with *A. tumefaciens* to